Home

Time Enhanced Architectural Modeling

T.E.A.M.

We transform architecture and design into experiences to be lived in VR

The Osaka Experience V: Interview with Franco Purini – Italian version

The Osaka Experience V: Interview with Franco Purini – Italian version

We are now translating the interview into English and we will make it available soon!

Il progetto di Maurizio Sacripanti del Padiglione Italiano all’Esposizione Internazionale di Osaka del 1970 continua a catturare la nostra attenzione. Stiamo approfondendo il nostro caso studio che si sta arricchendo di dettagli appassionanti grazie all’indagine sui materiali di concorso. Abbiamo notato che in precedenti ricostruzioni tridimensionali alcuni particolari sono rimasti abbozzati. Il nostro obiettivo è però l’esplorazione in realtà virtuale dell’edificio e non vorremmo lasciare nulla di indefinito. Quello che ci interessa è soprattutto che l’esperienza immersiva risulti quanto più possibile aderente all’idea che Sacripanti aveva del padiglione. In quest’ottica un altro strumento prezioso sono le interviste ad alcuni dei professionisti che hanno preso parte al progetto.

Ci è sembrato necessario contattare Franco Purini, che ha lavorato con continuità, dal 1964 al 1968 e successivamente dal 1971 al 1973, nello studio di Maurizio Sacripanti, indicato più volte da lui come il suo maestro.

MUST-READ INTRODUCTORY ARTICLES
First Stop: DONTSTOP architettura – Milano

First Stop: DONTSTOP architettura – Milano

For the first time visitors from outside our lab crossed the entrance of the pavilion that Sacripanti imagined for the 1970 Osaka International Expo.

The first tickets for a preview of the experience went to DONTSTOP architettura, an architecture studio founded in Milan in 2011 by Michele Brunello and Marco Brega, who welcomed us to discuss with them the adventure of T.E.A.M. followed by a visit to the pavilion. Maurizio De Caro, an architect, architecture theorist and critic and founder of Maurizio De Caro/Architects&Planners, joined the visit.

DONTSTOP is a multidisciplinary studio that involves itself with architecture, urban planning and exhibit design. Their dynamic approach, always open to debate and encouraging innovation, has stimulated a fruitful discussion on the integration of the medium of virtual reality in the design process. We considered the different ways to approach this according to the type of user and the objective to be achieved.

Osaka ’70 on tour!

Osaka ’70 on tour!

So, Maurizio Sacripanti’s reconstructed architecture is finally on tour! If you own an Oculus Quest you will soon be able to download the experience, if not, we can schedule a special VR session and bring it to you – during sessions, we strictly adhere to anti-COVID-19 protective measures.

It’s been 50 years since the conception of Maurizio Sacripanti’s project, never built, of the Italian pavilion for the Osaka Expo.

With T.E.A.M. we made a detailed reconstruction of the 3D model based on interviews with the design team and the study of the architect’s documents, with the aim of experiencing the building in VR with the Oculus Quest.

For our lab, Osaka ‘70 is a research tool that allows us to investigate the relationship between VR and architecture, in particular the relationship with kinetic elements. For the visitor it is a way to explore a never built project – one which is nevertheless fundamental for the history of Italian architecture – and enjoy a total experience of the space as Sacripanti imagined it.

The Osaka Experience IV: the Rebirth of the Pavilion in VR

The Osaka Experience IV: the Rebirth of the Pavilion in VR

Since we decided that our first case study would have been the Osaka pavilion, we started researching the project documentation, which was unfortunately lacking in details since the project never made it beyond the competition. In a 3D model for virtual reality, however, nothing can be left to chance. You can’t use tricks or “dark corners” to hide missing information, as you would probably do for a static render or a video. The visitors must be able to explore the pavilion as if they were actually in the physical space. Everything is out in the open. Likewise, we can’t build the scene as if it were the 3D space of a traditional videogame, where volumes and details of objects are simplified with textures.

This thinking therefore guided our work, but it wasn’t our only consideration. We have to admit that Sacripanti has meanwhile become almost a presence in our lab – we couldn’t have disappointed him.

And so, we imagined ourselves as archaeologists unearthing a building that was never built, re-constructing the Osaka pavilion in 2021, 53 years after its conception.*

Look, no hands!

Look, no hands!

One of the goals we set from the beginning with T.E.A.M. was to make the VR experience as natural as possible, even for users without previous experience with virtual reality headsets. In this regard, the use of the Oculus Quest headset has been almost mandatory. Besides the fact that it’s the only VR headset on the market today capable of providing a complete VR experience (with 6 degrees of freedom) without the need to be connected to an external PC, the Quest also allows – thanks to four cameras that scan and process the physical space all around – to trace the user’s hands in real time, using them as controllers directly within the VR environment. “So great!”, we said to ourselves, “We can make digital experiences without worrying about cables and external sensors, and above all we can allow the user to use their own hands!”

The Osaka Experience III: a Conversation with Maurizio Dècina

The Osaka Experience III: a Conversation with Maurizio Dècina

As already mentioned in the introductory articles about Maurizio Sacripanti and the Osaka competition, one of the main topics of the research project T.E.A.M is the digital modeling of several architectural designs, some of which were chosen from existing projects. One of them is the project of the Italian pavilion for the Osaka World Expo of 1970 designed by the Italian architect Maurizio Sacripanti.

During the early stage of our research project, we discovered an account of the Accademia Nazionale di San Luca made by the Italian engineer and academic Maurizio Dècina. He worked with Sacripanti on the Osaka pavilion, designing the mechanical and electronic parts of the project, and processing a system capable of achieving the movements of the pavilion. We are excited to present the following interview, conducted on July 25, 2020, aimed at understanding the contribution of Maurizio Dècina to the Osaka pavilion, his experience in the social and cultural context of those years, his vision of the union between computer science and architectural design, and finally the technological tools behind the Osaka project. We have translated the interview from Italian to English and the original text will be shown below.

The Osaka Experience II: the Competition

The Osaka Experience II: the Competition

“An architecture in continuous motion is not utopian… if you consider the normal perception of today’s individual, accustomed to current modes of transportation, television and fast-moving information, this perception is a mutable and dynamic one.”

Maurizio Sacripanti

If you missed the first introductory article about Maurizio Sacripanti, you can find it here.

In 1968 Sacripanti and his team joined the competition to design the Italian pavilion for the Universal Exposition of 1970 in Osaka. He proposed the idea of a space in perpetual motion, a living organism, experimental and courageous, which clearly differed from the other competing projects. This proposal was aimed at the promotion of the messages and contents that were supposed to represent the Italian values of the time. His idea of Italy was clear: “a reality in motion, amidst a thousand difficulties, and with a thousand obstacles, but with a commitment to vital and continuous dynamism” [1].

The Osaka Experience I: Maurizio Sacripanti

The Osaka Experience I: Maurizio Sacripanti

“[…] this man who, using time as an instrument of something else, treated it, as an architect, as if it were matter […]”

Renato Pedio

T.E.A.M. research is based on experimentation. The Piattaforma Zero represents the first laboratory in which to test basic dynamic structures, detached from a precise context. In order to both get a better understanding of the phenomena we are studying and to test the tools of our workflow, we felt even the need to confront existing projects of kinetic architecture.
As a first case study we have chosen to deal with an iconic project of recent architectural history: the pavilion for the 1970 World Expo in Osaka by Maurizio Sacripanti. This architecture, unfortunaely never realized, was presented at the competition of ideas held in 1968 to select the building that would represent Italy at the international exhibition.

Tips on feeding the Grasshopper

Tips on feeding the Grasshopper

This article describes some methods for the optimization of the Grasshopper definitions aimed at reaching a relationship between control parameters and geometry movements that is as quick and as smooth as possible.

This kind of optimization in GH could not be considered crucial if the purpose is to define a fixed shape that derives from a certain configuration of parameters. In this common scenario, a delay of a few milliseconds in the computation between one variation and another during the form-finding process should not cause a big headache to the designer. What we intend to do here, though, is real-time streaming of potentially always-changing computed geometries within the VR scene. Why are we doing this?

Unfolding the Origami

Unfolding the Origami

Our laboratory of dynamic spaces is enriched with a third experiment. We decided to test a type of movement that goes from top to bottom (and, potentially, vice-versa). We have therefore combined our Piattaforma Zero with a dynamic volume consisting of a set of panels that simulate the movement of a Yoshimura origami. The article explores in-depth how we have discretized the continuous surface of origami for construction needs. We then focus on the limits that these structures have in being translated into digital models. This is followed by the explanatory tutorial with the use of Grasshopper and specific plugins.

It is interesting to note how this example in VR, compared to the previous ones, leads to a different perception of interior/exterior for the user. Emphasizing here – depending on the degree of extension of the origami – more the aspect of privacy/exposure.

Behind the Folding Wall

Behind the Folding Wall

In this second experiment, we have chosen to create a moving surface that could help us to focus on the open/closed relationship between interior space and the surrounding environment. The different configurations that are generated have an effect on the user’s feelings. The configurations go from the maximum degree of privacy (shelter, protection) to a total mix between inside and outside (visibility, interrelation).  

The proposed geometries are always connected to our Piattaforma Zero and together they form a new dynamic space system – Minimum Viable Space – that enriches our test laboratory to be explored in virtual reality.

Light through the Sunshades

Light through the Sunshades

Sunshades is the first dynamic space experiment that we have integrated into the Piattaforma Zero. Our initial goal was to select some movable surfaces that are both easy to realize and to bring into the VR environment. This would allow us to explore two of our topics of interest: the relationship between light and shadow and the relationship between interior and exterior. All of these occur in the various set-ups that these surfaces can assume in relation to the user. The article shows the generative process of these first surfaces.

Piattaforma Chronicles I

Piattaforma Chronicles I

Everything started with a simple exercise:

“[…] please build a basic 3D game experience with a 2100 mm diameter circular platform suspended in a vacuum. On this platform identify three circular areas of 600mm diameter each, which we will call A, B and C. Rules of the game: the player is free to move on the platform, each of the three circular areas is interactive; each interaction is activated with the presence of the player above the area itself; each interaction triggers an event […]”

That’s what we asked all the aspiring T.E.A.M. project participants. This 3D experience later evolved, becoming the “Piattaforma Zero”: our very first act in the study and research for the representation and manipulation of mathematically correct dynamic design elements in Virtual Reality.